Chemistry seeks to understand our physical world on an atomic level. This microscopic picture uses the elements of the periodic table as building blocks for a vast array of molecules, ranging from water to DNA. But some of the most fascinating aspects of chemistry involve chemical reactions, where molecules combine and transform, sometimes dramatically, to generate new molecules.

## Chemistry 2024-2025 Courses

### First-Year Studies: Elemental Epics: Stories of Love, War, Madness, and Murder From the Periodic Table of the Elements

FYS—Year | 10 credits

CHEM 1065

The periodic table displays the chemical elements according to the structure of their atoms and, consequently, their chemical properties. The periodic table also represents a treasure trove of fascinating stories that span both natural and human history. Many of the elements on the table have influenced key historical events and shaped individual lives. In this course, we will tour the periodic table and learn how the stories of the discovery and investigation of the elements fuse science with human drama—from murders to cures for deadly diseases and from new technologies to the fall of civilizations. Our studies will include readings from traditional science textbooks and history books, as well as works of literature and poetry. This is a seminar course with two 90-minute class meetings per week. Individual conference meetings will be weekly during the first six weeks of the fall semester and biweekly thereafter.

#### Faculty

### General Chemistry I

Open, Small Lecture—Fall | 5 credits

CHEM 2010

This is the study of the properties, composition, and transformation of matter. Chemistry is central to the production of the materials required for modern life; for instance, the synthesis of pharmaceuticals to treat disease, the manufacture of fertilizers and pesticides required to feed an ever-growing population, and the development of efficient and environmentally benign energy sources. This course provides an introduction to the fundamental concepts of modern chemistry. We will begin by examining the structure and properties of atoms, which are the building blocks of the elements and the simplest substances in the material world around us. We will then explore how atoms of different elements can bond with each other to form an infinite variety of more complex substances, called compounds. This will lead us to an investigation of several classes of chemical reactions, the processes in which substances are transformed into new materials with different physical properties. Along the way, we will learn how and why the three states of matter (solids, liquids, and gases) differ from one another and how energy may be either produced or consumed by chemical reactions. In weekly laboratory sessions, we will perform experiments to illustrate and test the theories presented in the lecture part of the course. These experiments will also serve to develop practical skills in both synthetic and analytic chemical techniques.

#### Faculty

### General Chemistry II

Intermediate, Small Lecture—Spring | 5 credits

CHEM 3651

Prerequisite: General Chemistry I

This course is a continuation of General Chemistry I. We will begin with a detailed study of both the physical and chemical properties of solutions, which will enable us to consider the factors that affect both the rates and direction of chemical reactions. We will then investigate the properties of acids and bases and the role that electricity plays in chemistry. The course will conclude with introductions to nuclear chemistry and organic chemistry. Weekly laboratory sessions will allow us to demonstrate and test the theories described in the lecture segment of the course.

#### Faculty

### Organic Chemistry I

Open, Seminar—Fall | 5 credits

CHEM 3650

Organic chemistry is the study of chemical compounds whose molecules are based on a framework of carbon atoms, typically in combination with hydrogen, oxygen, and nitrogen. Despite this rather limited set of elements, there are more organic compounds known than there are compounds that do not contain carbon. Adding to the importance of organic chemistry is the fact that very many of the chemical compounds that make modern life possible—such as pharmaceuticals, pesticides, herbicides, plastics, pigments, and dyes—can be classed as organic. Organic chemistry, therefore, impacts many other scientific subjects; and knowledge of organic chemistry is essential for a detailed understanding of materials science, environmental science, molecular biology, and medicine. This course gives an overview of the structures, physical properties, and reactivity of organic compounds. We will see that organic compounds can be classified into families of similar compounds based upon certain groups of atoms that always behave in a similar manner no matter what molecule they are in. These functional groups will enable us to rationalize the vast number of reactions that organic reagents undergo. Topics covered in this course include: the types of bonding within organic molecules; fundamental concepts of organic reaction mechanisms (nucleophilic substitution, elimination, and electrophilic addition); the conformations and configurations of organic molecules; and the physical and chemical properties of alkanes, halogenoalkanes, alkenes, alkynes, and alcohols. In the laboratory section of the course, we will develop the techniques and skills required to synthesize, separate, purify, and identify organic compounds. Organic Chemistry is a key requirement for pre-med students and is strongly encouraged for all others who are interested in the biological and physical sciences. Each week, you will attend two 90-minute lectures, a 55-minute group conference, and a three-hour laboratory session.

#### Faculty

### The Chemistry of Everyday Life

Open, Seminar—Fall | 5 credits

CHEM 3102

This course examines the chemistry of our everyday life—the way things work. The emphasis of this course is on understanding the everyday use of chemistry. We will introduce chemistry concepts with everyday examples, such as household chemicals and gasoline, that show how we already use chemistry and reveal why chemistry is important to us. We will concentrate on topics of current interest such as environmental pollution and the substances that we use in our daily lives that affect our environment and us.

#### Faculty

### Organic Chemistry II

Intermediate, Seminar—Spring | 5 credits

CHEM 3651

Prerequisite: Organic Chemistry I

In this course, we will explore the physical and chemical properties of additional families of organic molecules. The reactivity of aromatic compounds, aldehydes and ketones, carboxylic acids and their derivatives (acid chlorides, acid anhydrides, esters, and amides), enols and enolates, and amines will be discussed. We will also investigate the methods by which large, complicated molecules can be synthesized from simple starting materials. Modern methods of organic structural determination—such as mass spectrometry, 1H and 13C nuclear magnetic resonance spectroscopy, and infrared spectroscopy—will also be introduced. In the laboratory section of this course, we will continue to develop the techniques and skills required to synthesize, separate, purify, and identify organic compounds. Organic Chemistry II is a key requirement for pre-med students and is strongly encouraged for all others who are interested in the biological and physical sciences. Each week, you will attend two 90-minute lectures, a 55-minute group conference, and a three-hour laboratory session.

#### Faculty

### Biochemistry

Advanced, Seminar—Spring | 5 credits

CHEM 4064

Prerequisite: Organic Chemistry and General Biology.

Biochemistry is the chemistry of biological systems. This course will introduce students to the important principles and concepts of biochemistry. Topics will include the structure and function of biomolecules such as amino acids, proteins, enzymes, nucleic acids, RNA, DNA, and bioenergetics. This knowledge will then be used to study the pathways of metabolism.

#### Faculty

### Related Biology Courses

#### General Biology: Genes, Cells, and Evolution

Open, Small Lecture—Fall

Biology, the study of life on Earth, encompasses structures and forms ranging from the very minute to the very large. In order to grasp the complexities of life, we begin this study with the cellular and molecular forms and mechanisms that serve as the foundation for all living organisms. The initial part of the semester will introduce the fundamental molecules critical to the biochemistry of life processes. From there, we branch out to investigate the major ideas, structures, and concepts central to the biology of cells, genetics, and the chromosomal basis of inheritance. Finally, we conclude the semester by examining how those principles relate to the mechanisms of evolution. Throughout the semester, we will discuss the individuals responsible for major discoveries, as well as the experimental techniques and process by which such advances in biological understanding are made. Classes will be supplemented with weekly laboratory work.

##### Faculty

#### Neurological Disorders

Open, Seminar—Fall

Disorders of the brain are often devastating. They can disrupt fundamental characteristics of life, such as memory formation and retrieval, the ability to communicate, the foundations of a personality, and the execution of movements, including those necessary for breathing. In this course, we will learn about the brain in health and disease by exploring the neuroscience of neurological disorders. We will study Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, lytico-bodig, amyotrophic lateral sclerosis, chronic traumatic encephalopathy, and autism spectrum disorder. We will consider these disorders holistically and from a biological point of view. We will explore: the lived experience of the affected and their loved ones; how symptoms of the disorders can be understood by studying changes in the neural tissues, cells, and molecules associated with each disorder; and what is known about genetic or environmental underpinnings and current treatments. Readings will be drawn primarily from the writings of the neurologist Oliver Sacks, the neuroscientist Eric Kandel, and the science journalist and Parkinson’s patient Jon Palfreman, in addition to magazine articles, scientific studies, and relevant films that complement and expand upon their descriptions of brain function.

##### Faculty

#### Advanced Cell Biology: Regulation of Cell Function

Advanced, Seminar—Spring

The wide variety of ways that different cells can respond to changes in their environment results from differences in the timing and level of expression of various gene and proteins, which collectively are responsible for modulating differences in cellular activity. Much of the regulation of gene function occurs at the level of DNA activity (transcription); and, indeed, it has been estimated that 10 percent of all human genes encode transcription factors responsible for this level of regulation. Because of the complexity of the cell and its critical need to maintain normal cellular function in a variety of environments, however, multiple mechanisms in addition to transcription-factor activity have evolved to modify and control cell activity. A fundamental goal in biology, therefore, is to understand this assortment of molecular mechanisms used by cells to regulate gene expression and subsequent cell function. In this course, we will focus on these various mechanisms, examining regulatory events at the level of transcription, translation, receptor activity and signal transduction, determination of cell fate, and the modification and localization of intracellular proteins. Once we understand how cells regulate their function, we can begin to imagine ways in which we may intervene to modify specific cell activities as well as how specific chemicals and compounds alter these regulatory mechanisms to the detriment of the cell. No textbooks are used in this course; instead, all topics and readings are drawn from recently published, peer-reviewed, scientific articles.

##### Faculty

### Related Environmental Studies Courses

#### Workshop on Sustainability Solutions at Sarah Lawrence College

Open, Small Lecture—Spring

As we want to engage in individual and collective efforts toward sustainable and climate-change mitigating solutions, this workshop offers an opportunity for students to explore the multiple ways in which “sustainability” can be fostered and developed at an institution like Sarah Lawrence College. Students will work in small groups on a variety of projects and produce research and educational material that can lead to concrete and actionable proposals for the College and our community to consider. Students will determine their own areas of interest and research, from energy and water-usage monitoring to composting solutions, recycling/reusing and consumer sobriety, landscaping choices, pollinators and natural diversity, food growing, natural and human history of the land, and community collaborations, to name a few. As part of their project effort, students will engage with College administrators who are actively working toward sustainable solutions, as well as student, staff, and faculty groups such as the Warren Green vegetable garden, the Sarah Lawrence Interdisciplinary Collective on the Environment (SLICE), and the Sustainability Committee. We will also explore the possibility of writing grants in coordination with other actors at the College. This workshop will meet once a week for one hour. It is offered as pass/fail based on attendance and a group project that will mostly be developed during our meeting time. It is open to all students, including first-year students. All skills and areas of expertise are welcome, from environmental science to writing and visual and studio arts—but any interest in issues of sustainability and a strong sense of dedication will suffice!

##### Faculty

### Related Mathematics Courses

#### Calculus II: Further Study of Motion and Change

Open, Seminar—Fall

Calculus is the mathematical gift that keeps giving. (Thanks Newton and company!) In this class, you will expand your knowledge of limits, derivatives, and integrals with concepts and techniques that will enable you to solve many important problems in mathematics and the sciences. You will be able to judge whether answers provided by WolframAlpha or ChatGPT are correct. Topics will include: differentiation review, integration review, integration with nonpolynomial functions, applications of integration (finding area, volume, length, center of mass, moment of inertia, probability), advanced techniques for integration (substitution, integration-by-parts, partial fractions), infinite sequences, infinite series, convergent and divergent sums, power series, and, time permitting, parametric equations of a curve and polar coordinates. Students will work on a conference project related to the mathematical topics covered in class and are free to choose technical, historical, crafty, computational, or creative projects. It is recommended that students have at least one semester of calculus at either college or high-school level or be very comfortable with quickly learning any missing material.

##### Faculty

#### Multivariable Mathematics: Linear Algebra, Vector Calculus, and Differential Equations

Intermediate, Seminar—Year

Rarely is a quantity of interest—tomorrow’s temperature, unemployment rates across Europe, the cost of a spring-break flight to Fort Lauderdale—a simple function of just one primary variable. Reality, for better or worse, is mathematically multivariable. This course introduces an array of topics and tools used in the mathematical analysis of multivariable functions. The intertwined theories of vectors, matrices, and differential equations and their applications will be the central themes of exploration in this yearlong course. Specific topics to be covered include the algebra and geometry of vectors in two, three, and higher dimensions; dot and cross products and their applications; equations of lines and planes in higher dimensions; solutions to systems of linear equations, using Gaussian elimination; theory and applications of determinants, inverses, and eigenvectors; volumes of three-dimensional solids via integration; spherical and cylindrical coordinate systems; and methods of visualizing and constructing solutions to differential equations of various types. Conference work will involve an investigation of some mathematically-themed subject of the student’s choosing.

##### Faculty

#### Calculus I: The Study of Motion and Change

Open, Seminar—Fall

Our existence lies in a perpetual state of change. An apple falls from a tree; clouds move across expansive farmland, blocking out the sun for days; meanwhile, satellites zip around the Earth transmitting and receiving signals to our cell phones. The calculus was invented to develop a language to accurately describe the motion and change happening all around us. The ancient Greeks began a detailed study of change but were scared to wrestle with the infinite, and so it was not until the 17th century that Isaac Newton and Gottfried Leibniz, among others, tamed the infinite and gave birth to this extremely successful branch of mathematics. Though just a few hundred years old, the calculus has become an indispensable research tool in both the natural and social sciences. Our study begins with the central concept of the limit and proceeds to explore the dual processes of differentiation and integration. Numerous applications of the theory will be examined. For conference work, students may choose to undertake a deeper investigation of a single topic or application of the calculus or conduct a study of some other mathematically-related topic. This seminar is intended for students interested in advanced study in mathematics or sciences, students preparing for careers in the health sciences or engineering, and any student wishing to broaden and enrich the life of the mind.

##### Faculty

#### An Introduction to Statistical Methods and Analysis

Open, Lecture—Spring

Variance, correlation coefficient, regression analysis, statistical significance, and margin of error—you’ve heard these terms and other statistical phrases bantered about before, and you’ve seen them interspersed in news reports and research articles. But what do they mean? How are they used? And why are they so important? Serving as an introduction to the concepts, techniques, and reasoning central to the understanding of data, this lecture course focuses on the fundamental methods of statistical analysis used to gain insight into diverse areas of human interest. The use, misuse, and abuse of statistics will be the central focus of the course; and specific topics of exploration will be drawn from experimental design theory, sampling theory, data analysis, and statistical inference. Applications will be considered in current events, business, psychology, politics, medicine, and many other areas of the natural and social sciences. Statistical (spreadsheet) software will be introduced and used extensively in this course, but no prior experience with the technology is assumed. Group conferences, conducted in workshop mode, will serve to reinforce student understanding of the course material. This lecture is recommended for anybody wishing to be a better-informed consumer of data and strongly recommended for those planning to pursue advanced undergraduate or graduate research in the natural sciences or social sciences. Enrolled students are expected to have an understanding of basic high-school algebra and plane coordinate geometry.

##### Faculty

#### Calculus II: Further Study of Motion and Change

Open, Seminar—Spring

Calculus is the mathematical gift that keeps giving. (Thanks Newton and company!) In this class, you will expand your knowledge of limits, derivatives, and integrals with concepts and techniques that will enable you to solve many important problems in mathematics and the sciences. You will be able to judge whether answers provided by WolframAlpha or ChatGPT are correct. Topics will include: differentiation review, integration review, integration with nonpolynomial functions, applications of integration (finding area, volume, length, center of mass, moment of inertia, probability), advanced techniques for integration (substitution, integration-by-parts, partial fractions), infinite sequences, infinite series, convergent and divergent sums, power series, and, time permitting, parametric equations of a curve and polar coordinates. Students will work on a conference project related to the mathematical topics covered in class and are free to choose technical, historical, crafty, computational, or creative projects. It is recommended that students have at least one semester of calculus at either college or high-school level or be very comfortable with quickly learning any missing material.

##### Faculty

### Related Physics Courses

#### General Physics I (Classical Mechanics)

Open, Small Lecture—Fall

General physics is a standard course at most institutions; as such, this course will prepare you for more advanced work in physical science, engineering, or the health fields. Lectures will be accessible at all levels, and through group conference you will have the option of either taking an algebra-based or calculus-based course. This course will cover introductory classical mechanics, including kinematics, dynamics, momentum, energy, and gravity. Emphasis will be placed on scientific skills, including: problem solving, development of physical intuition, scientific communication, use of technology, and development and execution of experiments. The best way to develop scientific skills is to practice the scientific process. We will focus on learning physics through discovering, testing, analyzing, and applying fundamental physics concepts in an interactive classroom, through problem solving, as well as in weekly laboratory meetings. *Students enrolling in the calculus-based section are encouraged to have completed at least one semester of calculus as a prerequisite. It is strongly recommended that students who still need to complete a second semester of calculus enroll in Calculus II, as well. Calculus II, or equivalent, is highly recommended to take the calculus-based section of General Physics II (Electromagnetism and Light) in the spring.*

##### Faculty

#### General Physics II (Electromagnetism and Light)

Open, Small Lecture—Spring

General physics is a standard course at most institutions; as such, this course will prepare you for more advanced work in physical science, engineering, or the health fields. Lectures will be accessible at all levels, and through group conference you will have the option of either taking an algebra-based or calculus-based course. This course will cover waves, geometric and wave optics, electrostatics, magnetostatics, and electrodynamics. We will use the exploration of the particle and wave properties of light to bookend our discussions and ultimately finish our exploration of classical physics with the hints of its incompleteness. Emphasis will be placed on scientific skills, including: problem solving, development of physical intuition, scientific communication, use of technology, and development and execution of experiments. The best way to develop scientific skills is to practice the scientific process. We will focus on learning physics through discovering, testing, analyzing, and applying fundamental physics concepts in an interactive classroom, through problem solving, as well as in weekly laboratory meetings. *Students enrolling in the calculus-based section are encouraged to have completed Calculus II as a prerequisite. It is highly recommended to have taken the first semester of General Physics I in the fall prior to enrolling in this course.*

##### Faculty

#### Resonance and Its Applications

Intermediate, Seminar—Fall

This lab-based course is designed to teach students critical advanced laboratory skills while exploring the fascinating phenomenon of resonance and its many applications. The course will be broken into three main units: mechanical resonators, electronic resonators, and quantum mechanical resonators. Resonators are physical systems that undergo periodic motion and react quite dramatically to being driven at particular frequencies (like the opera singer hitting just the right note to break a wine glass). These systems are very common in everyday life, as well as inside many important technological devices. Each unit will explore a particular application of resonance (e.g., building RLC tank circuits for electronic resonance and utilizing our benchtop NMR spectrometer to explore quantum mechanical resonance). Although some class time will be spent going over the relevant theory, the majority of the class time will be spent designing and doing experiments using advanced lab equipment, analyzing data using Jupyter (iPython) notebooks, and reporting the results using LaTeX. For conference work, students are encouraged to develop an experimental research question, design an experiment to answer that question, perform the experiment, analyze the data, present their findings at the Science Poster Session, and write up their results in the form of a short journal article.

##### Faculty

#### Chaos

Open, Seminar—Spring

Learn to appreciate the complex order that can be found in chaos! This course introduces the beautiful world of nonlinear and chaotic dynamics and also provides the mathematical and numerical tools to explore the astounding patterns that can arise from these inherently unpredictable systems. We shall see how chaos emerges from fairly simple nonlinear dynamical systems; utilize numerical methods to simulate the dynamics of chaotic systems; and explore characteristics of chaos using iterated maps, bifurcation diagrams, phase space, Poincaré sections, Lyapunov exponents, and fractal dimensions. Class time will oscillate between the presentation of new material and workshops for hands-on exploration. Students are encouraged to build and/or analyze their own chaotic system as potential conference projects. No previous programming experience is required, and all relevant mathematical concepts will be introduced.

##### Faculty

The Center for the Urban River at Beczak (CURB), located on the shores of the Hudson River in downtown Yonkers, is Sarah Lawrence’s first academic research facility beyond the main campus.